skip to main content


Search for: All records

Creators/Authors contains: "Antil, Harbir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 30, 2025
  2. Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available July 19, 2024
  4. Abstract

    Event or neuromorphic cameras are novel biologically inspired sensors that record data based on the change in light intensity at each pixel asynchronously. They have a temporal resolution of microseconds. This is useful for scenes with fast moving objects that can cause motion blur in traditional cameras, which record the average light intensity over an exposure time for each pixel synchronously. This paper presents a bilevel inverse problem framework for neuromorphic imaging. Existence of solution to the inverse problem is established. Second order sufficient conditions are derived under special situations for this nonconvex problem. A second order Newton type solver is derived to solve the problem. The efficacy of the approach is shown on several examples.

     
    more » « less
  5. Free, publicly-accessible full text available June 6, 2024
  6. Abstract

    We consider the simulation of Bayesian statistical inverse problems governed by large-scale linear and nonlinear partial differential equations (PDEs). Markov chain Monte Carlo (MCMC) algorithms are standard techniques to solve such problems. However, MCMC techniques are computationally challenging as they require a prohibitive number of forward PDE solves. The goal of this paper is to introduce a fractional deep neural network (fDNN) based approach for the forward solves within an MCMC routine. Moreover, we discuss some approximation error estimates. We illustrate the efficiency of fDNN on inverse problems governed by nonlinear elliptic PDEs and the unsteady Navier–Stokes equations. In the former case, two examples are discussed, respectively depending on two and 100 parameters, with significant observed savings. The unsteady Navier–Stokes example illustrates that fDNN can outperform existing DNNs, doing a better job of capturing essential features such as vortex shedding.

     
    more » « less
  7. Free, publicly-accessible full text available May 1, 2024
  8. Abstract

    We consider optimization problems in the fractional order Sobolev spaces with sparsity promoting objective functionals containingLp-pseudonorms,p(0,1). Existence of solutions is proven. By means of a smoothing scheme, we obtain first-order optimality conditions, which contain an equation with the fractional Laplace operator. An algorithm based on this smoothing scheme is developed. Weak limit points of iterates are shown to satisfy a stationarity system that is slightly weaker than that given by the necessary condition.

     
    more » « less
  9. Abstract This paper addresses the approximation of fractional harmonic maps. Besides a unit-length constraint, one has to tackle the difficulty of nonlocality. We establish weak compactness results for critical points of the fractional Dirichlet energy on unit-length vector fields. We devise and analyze numerical methods for the approximation of various partial differential equations related to fractional harmonic maps. The compactness results imply the convergence of numerical approximations. Numerical examples on spin chain dynamics and point defects are presented to demonstrate the effectiveness of the proposed methods. 
    more » « less